WORDCOUNT WITH HADOOP

By the end of this activity, you will be able to:

Execute the WordCount application.

Copy the results from WordCount out of HDFS.

Open a terminal shell. Start the Cloudera VM in VirtualBox, if not already running, and open a
terminal shell. Detailed instructions for these steps can be found in the previous Readings.
See example MapReduce programs. Hadoop comes with several example MapReduce
applications. You can see a list of them by running hadoop jar /usr/jars/hadoop-
examples.jar. We are interested in running WordCount.

[cloudera@quickstart ~1$ |hadoop jar /usr/jars/hadoop-examples.jar |
An example program must be given as the first argument.
Valid program names are:

aggregatewordcount: An Aggregate based map/reduce program that counts the words in the in
put files.

aggregatewordhist: An Aggregate based map/reduce program that computes the histogram of t
he words in the input files.

bbp: A map/reduce program that uses Bailey-Borwein-Plouffe to compute exact digits of Pi.

dbcount: An example job that count the pageview counts from a database.

distbbp: A map/reduce program that uses a BBP-type formula to compute exact bits of Pi.

grep: A map/reduce program that counts the matches of a regex in the input.

join: A job that effects a join over sorted, equally partitioned datasets

multifilewc: A job that counts words from several files.

pentomino: A map/reduce tile laying program to find solutions to pentomino problems.

pi: A map/reduce program that estimates Pi using a quasi-Monte Carlo method.

randomtextwriter: A map/reduce program that writes 10GB of random textual data per node.

randomwriter: A map/reduce program that writes 10GB of random data per node.

secondarysort: An example defining a secondary sort to the reduce.

sort: A map/reduce program that sorts the data written by the random writer.

sudoku: A sudoku solver.

teragen: Generate data for the terasort

terasort: Run the terasort

teravalidate: Checking results of terasort

{wordcount: A map/reduce program that counts the words in the input files.|

wordmean: A map/reduce program that counts the average length of the words in the input f
iles.

wordmedian: A map/reduce program that counts the median length of the words in the input
files.

The output says that WordCount takes the name of one or more input files and the name of
the output directory. Note that these files are in HDFS, not the local file system.

3. Verify the input file exists. In the previous Reading, we downloaded the complete works of
Shakespeare and copied them into HDFS. Let's make sure this file is still in HDFS so we can run
WordCount on it. Run hadoop fs -Is

[cloudera@quickstart Downloads]$ lhadoop fs -1s|
Found 1 items

-rw-r--r-- 1 cloudera cloudera 5458199 2016-02-12 15:14

[cloudera@quickstart Downloads]$ I

4. See WordCount command line arguments. We can learn how to run WordCount by
examining its command-line arguments. Run hadoop jar /usr/jars/hadoop-examples.jar
wordcount.

[cloudera@quickstart ~]$ |hadoop jar /usr/jars/hadoop-examples.jar wordcount|
Usage: wordcount <in> [<in>...] <out>

5. Run WordCount. Run WordCount for words.txt: hadoop jar /usr/jars/hadoop-examples.jar
wordcount words.txt out

[cloudera@quickstart Downloads]$ [hadoop jar /usr/jars/hadoop-examples.jar wordcount words.txt out
16/02/12 15:27:34 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032

16/02/12 15:27:35 INFO input.FileInputFormat: Total input paths to process : 1

1A/AD /12 18:27.28 TMNEN manradiira TnhCQiihmittar: nimhar af enlite:1

As WordCount executes, the Hadoop prints the progress regarding Map and Reduce. When the
WordCount is complete, both will say 100%.

16/02/12 15:27:46 INFO mapreduce.Job: |map 0% reduce 0%
16/02/12 15:27:54 INFO mapreduce.Job: |map 100% reduce 0%
16/02/12 15:28:02 INFO mapreduce.Job: |[map 100% reduce 100%
16/02/12 15:28:02 INFO mapreduce.Job: Job job 1455318527581 0001 completed successfully

6. See WordCount output directory. Once WordCount is finished, let's verify the output was
created. First, let's see that the output directory, out, was created in HDFS by running hadoop
fs—lIs

[cloudera@quickstart Downloads]$ lhadoop fs -1s|

Found 2 items

drwxr-xr-x - cloudera cloudera 0 2016-02-12 15:28 out
-rw-r--r-- 1 cloudera cloudera 5458199 2016-02-12 15:14 words.txt
[cloudera@quickstart Downloads]$

We can see there are now two items in HDFS: words.txt is the text file that we previously
created, and out is the directory created by WordCount.

7. Look inside output directory. The directory created by WordCount contains several files.
Look inside the directory by running hadoop —fs Is out

[cloudera@quickstart Downloads]$ |hadoop fs -1s out]

Found 2 items

-TW-r--r-- 1 cloudera cloudera 0 2016-02-12 15:28 out/ SUCCESS
SrW-r--r-- 1 cloudera cloudera 717768 2016-02-12 15:28 out/part-r-00000
[cloudera@quickstart Downloads]$

The file part-r-00000 contains the results from WordCount. The file _SUCCESS means
WordCount executed successfully.

8. Copy WordCount results to local file system. Copy part-r-00000 to the local file system by
running hadoop fs —copyToLocal out/part-r-00000 local.txt

[cloudera@quickstart Downloads]$ [hadoop fs -copyTolLocal out/part-r-00000 Local.txt
[cloudera@auickstart Downloads1$

9. View the WordCount results. View the contents of the results: more local.txt

[cloudera@quickstart Downloads]$ [more Llocal.txtl

Each line of the results file shows the number of occurrences for a word in the input file. For
example, Accuse appears four times in the input, but Accusing appears only once.

Accost- 1
Account 1
Accountant
Accounted
Accoutred
Accurs'd
Accurs'd,
Accursed
Accusativo,
Accuse 4
Accusing
Acheron 2
Acheron,
Aches 1
Achiev'd

Complete

NPRRNRFRERFRRF

=

